

Greg White

Technical Manager Airports greg.white@fultonhogan.com.au

Acknowledgements

- Bruce Rodway for review comments
- Kevin Embleton and Tom Gabrawy for physical testing
- University of Wisconsin-Madison for i-Pas 2 software

Introduction

- A broader forensic investigation into asphalt deformation
- Significant testing of trafficked and un-trafficked asphalt
- Noticed some differences between the two sets of results

Investigation Aim

To measure the change in an asphalt surface's internal structure and response resulting from significant post-construction aircraft traffic

The asphalt mix

- Typical Australian Airport Marshall asphalt
- Multigrade (PPA modified) binder
- Two years old at the time of sampling
- Typical Marshall and other properties

Parameter	Mix Design Value
Binder Content (%)	5.8
Hydrated Lime Content (%)	1.0
Passing 75 µm sieve (%)	6.5
Marshal Stability (kN)	17.5
Marshal Flow (mm)	3.1
Air Voids (%)	4.2

Additional performance parameters

Tensile Strength Ratio (%)	98
Resilient Modulus (MPa)	2,790
Indirect Diametrical Tensile Strength (kN)	960
Wheel Tracking (mm)	3.4

Aggregate skeleton characterisation

- 3D X-Ray Computer Tomography
- 2D Digital Image Analysis

Aggregate orientation

- Average Angle of Inclination horizontalness (0 to 90°)
- Vector Magnitude randomness (0 to 100%)
- Affected by aggregate, mix, compaction method and density

Effect of Traffic

- Limited work has been published
 - One year of traffic increased shear strength of mix
 - Density increases lead to improved bond strength
 - Aggregate re-orientates under laboratory wheel tracking
- Knowledge gaps
 - Nothing specific to aircraft traffic
 - Nothing providing multi-measures of scientific data

Basis of Comparisons

- Same Asphalt so no volumetric or production data
- Relative Density Marshall density from Lot QA
- Resilient Modulus Repeated Indirect Tension at 25°C
- Rut potential Cooper's machine at 60°C for 10,000 passes
- Aggregate Orientation Vector Magnitude and Average Angle
- Interface Shear Resistance Strength, Modulus & Work

Aggregate Orientation

- 2D digital image analysis
- i-Pas 2 software
 - Input: image, mix volumetrics and image scale
 - Output: contact lengths, contact angles, location & angle
- Manually calculate using Curray's equations
 - Vector Magnitude
 - Average Angle of Inclination

i-Pas 2 Analysis

Contact Points
Location and Size
Orientation

Interface Shear Resistance

- Direct Shear in a shear-box type device
- Up to eight cubic samples from a single core
- Tested at 20-500 kPa normal stress
- Tested at 50 mm/minute deformation and 55°C
- Load and Deformation plotted against time
- Strength, Modulus and Work (to 10 mm displacement)

The Test Arrangement

www.fultonhogan.com

Typical Test Output

www.fultonhogan.com

Statistical Analysis

- For dichotomous comparisons
 - Trafficked versus Un-trafficked
 - Modulus, Density, Wheel Track & Aggregate Orientation
 - Welch's version of Student's T-test
- For covariate comparisons
 - Trafficked versus Un-trafficked AFTER Covariate effects
 - Interface Shear Resistance (Strength, Modulus & Work)
 - Linear regression on the covariate (normal stress)

Relative Density

- Statistically significant difference
- Slight increase in density with 2 years of traffic
- Un-trafficked density very similar to as-constructed

Statistic	Trafficked	Un-trafficked	
Mean	99.5%	98.0%	
Standard Deviation	1.3%	1.3%	
p-value	0.05 for 30 degrees of freedom (df)		

Resilient Modulus

- Statistically significant difference
- Moderate increase in modulus with 2 years of traffic
- Expected as the density increased and aggregate stabilises

Statistic	Trafficked	Un-trafficked	
Mean	3,675 MPa	3,158 MPa	
Standard Deviation	668 MPa	371 MPa	
p-value	0.04 for 30 degrees of freedom (df)		

Wheel Tracking

- Statistically significant difference
- Moderate reduction in rut potential with 2 years of traffic
- Expected as the density increase consumes rut potential

Statistic	Trafficked	Un-trafficked	
Mean	1.9 mm	3.3 mm	
Standard Deviation	0.6 mm	0.2 mm	
p-value	< 0.01 for 6 degrees of freedom (df)		

Aggregate orientation

- Statistically significant differences
- Aggregate more aligned to horizontal after two year's traffic
- Vector Magnitude very high compared to literature

Ctotiotio	Averag	Average Angle		Vector Magnitude	
Statistic	Trafficked	Un-trafficked	Trafficked	Un-trafficked	
Mean	32.8°	39.8°	69.1%	59.0%	
Std. Dev.	0.93°	2.73°	4.6%	6.4%	
p-value	< 0.01 for 7 df		0.01 for 7 df 0.02 for 7 df		

Interface Shear Resistance

- Normal Stress is very significant on all with linear impact
- Traffic significant for Strength and Work
- Traffic not significant for Modulus
 - Modulus thought to be governed by interface texture

Duadiator	D ² for Dograpoion	Traffic	
Predictor	R ² for Regression	Increase	p-value
Strength	77%	25-50%	0.01
Modulus	23%	0-5%	0.70
Work	91%	25-100%	< 0.01

In summary

- Two years of aircraft traffic statistically significant for all parameters except for the modulus of the interface bond
- Under heavy traffic
 - Aggregate re-orientated to a more horizontal alignment
 - Relative density increased moderately
 - Increased asphalt modulus
 - Consumed some rut potential
 - Improved aggregate embedment and bond

In conclusion

- Aircraft traffic has a substantial impact on an asphalt
- General improvement in structure and response
- Further work required to determine rate of evolution
- Where possible after resurfacing
 - Allow straight-through traffic before heavy braking
 - Closure of rapid exit taxiways after resurfacing
 - Discourage the use of heavy braking
 - Reduced risk of shear or slippage failure

